Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 181: 105830, 2021 05.
Article in English | MEDLINE | ID: mdl-33485946

ABSTRACT

Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP). Hsp12 gains in structure in the presence of specific lipids (PiP2). The helical form binds to liposomes models membrane with high affinity, leading to their rigidification. These results suggest that hydrophobic and ionic interactions are involved. Hsp12 is most likely a membrane chaperone expressed during stresses in Saccharomyces cerevisiae.


Subject(s)
Heat-Shock Proteins/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Protein Conformation, alpha-Helical
2.
Nanoscale Adv ; 3(14): 4244-4253, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-36132846

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline. The aggregation of the protein then seems to be a causative factor of the neurodegeneration associated with AD. The hypothesis of an involvement of the membrane in modulating the misfolding and assembly of Tau into paired helical filaments attracts increasing interests. To provide more insight about how lipids can modulate the interactions with Tau, we have conducted a comprehensive Atomic Force Microscopy (AFM) study involving supported lipid bilayers of controlled compositions with the Tau microtubule-binding construct K18. Particularly, the effects of zwitterionic and negatively charged phospholipids on the interaction have been investigated. Deleterious solubilization effects have been evidenced on fluid zwitterionic membranes as well as an inability of K18 to fragment gel phases. The role of negative lipids in the aggregation of the peptide and the particular ability of phosphatidylinositol-4,5-bisphosphate (PIP2) in inducing K18 fibrillization on membranes are also reported.

3.
Front Mol Biosci ; 7: 571696, 2020.
Article in English | MEDLINE | ID: mdl-33033718

ABSTRACT

Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aß1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aß1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aß1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aß peptides, L34T, oG37C, and WT Aß1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel ß-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aß1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.

4.
Biochem Biophys Res Commun ; 531(2): 140-143, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32782150

ABSTRACT

Despite numerous studies on detergent-induced solubilization of membranes and on the underlying mechanisms associated with this process, very little is known regarding the selectivity of detergents for lipids during their extraction from membranes. To get insights about this phenomenon, solubilization of model bilayers prepared from binary lipid mixtures by different detergents was examined. Three commonly used detergents were used: the non-ionic Triton X-100 (TX), the negatively-charged sodium dodecylsulfate (SDS), and the positively-charged n-dodecyltrimethylammonium chloride (DTAC). Two model membranes were used in order to identify if specific intermolecular interactions can lead to lipid selectivity: bilayers made of a binary mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and of a binary mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). Therefore, it was possible to describe systems presenting a combination of detergents bearing different charges with bilayers with different polymorphic propensities and charge. In conditions for which partial solubilization was observed, the composition of the extracted lipid phase was quantified with Liquid Chromatography coupled to Mass Spectrometry to elucidate whether a lipid selectivity occurred in the solubilization process. On one hand, it is found that repulsive or attractive electrostatic interactions did not lead to any lipid selectivity. On the other hand, POPE was systematically less extracted than POPC, regardless of the detergent nature. We propose that this lipid selectivity is inherent to the molecular shape of POPE unsuited for micelles curvature properties.


Subject(s)
Detergents/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry
5.
Biochim Biophys Acta Biomembr ; 1862(6): 183215, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32061645

ABSTRACT

The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers. While this methodology finally set us free from the use of detergents, some limitations are however associated with the use of such copolymers. Among them, one can cite the tedious control of the nanodiscs size, their instability in basic pH and in the presence of divalent cations. In this respect, many variants of the widely used Styrene Maleic Acid (SMA) copolymer have been developed to specifically address those limitations. With the multiplication of new SMA copolymer variants and the growing interest in copolymer-based nanodiscs for the characterisation of membrane proteins, there is a need to better understand and control their formation. Among the techniques used to characterise the solubilisation of lipid bilayer by amphipathic molecules, cryo-TEM, 31P NMR, DLS, ITC and fluorescence spectroscopy are the most widely used, with a consensus made in the sense that a combination of these techniques is required. In this work, we propose to evaluate the capacity of Microfluidic Diffusional Sizing (MDS) as a new method to follow copolymer nanodiscs formation. Originally designed to determine protein size through laminar flow diffusion, we present a novel application along with a protocol development to observe nanodiscs formation by MDS. We show that MDS allows to precisely measure the size of nanodiscs, and to determine the copolymer/lipid ratio at the onset of solubilisation. Finally, we use MDS to characterise peptide/nanodisc interaction. The technique shows a promising ability to highlight the pivotal role of lipids in promoting interactions through a case study with an aggregating peptide. This confirmed the relevance of using the MDS and nanodiscs as biomimetic models for such investigations.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Microfluidics/methods , Nanostructures/chemistry , Animals , Diffusion , Humans , Lipid Bilayers/metabolism , Maleates/chemistry , Membrane Proteins/metabolism , Particle Size , Peptides/metabolism , Polymers/chemistry , Polystyrenes/chemistry , Solubility
6.
Nanoscale ; 11(43): 20857-20867, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31657431

ABSTRACT

Alzheimer's disease is a devastating pathology affecting an increasing number of individuals following the general rise in life expectancy. Amyloid peptide Aß1-42 has been identified as one of the main culprits of the disease. The peptide has been shown to have major effects on lipid membranes, including membrane fragmentation. The membrane composition has been identified as a factor that plays a pivotal role in regulating peptide/membrane interactions and several results suggest that lipid domains, or rafts, can promote peptide-induced membrane damage. In this work, we examined the effects of lipid segregation on the membrane-perturbing ability of Aß1-42 and an oligomeric mutant (G37C), a peptide that shares common features with the suspected toxic intermediates involved in the neurodegeneration process. Atomic force microscopy (AFM) was used to determine the impact of these peptides on the supported lipid bilayers of various compositions. In 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/cholesterol) and DOPC/sphingomyelin/cholesterol ternary mixtures, two systems exhibiting liquid-liquid phase separations, it was shown that Aß1-42 and G37C exclusively aggregated on liquid-disordered-phase domains, creating large deposits and even causing membrane fragmentation for the latter composition. Cholesterol and ganglioside GM1, the two most documented lipids in the context of Alzheimer's disease, are also considered to play a crucial role in promoting detrimental interactions with amyloid peptides. We show that, in model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, the presence of either cholesterol or GM1 in a proportion of 10 mol%, a content supposed to lead to domain formation, favoured the association of both Aß1-42 and G37C, leading to a harmful membrane fragmentation. The AFM results established that the presence of domains favoured membrane perturbations induced by the amyloid peptides. It is proposed that lipid packing defects at the domain interface could act as adsorption and nucleation sites for the amyloid peptides. The more extensive bilayer perturbations induced by G37C compared to Aß1-42 supported this hypothesis, indicating that oligomers that cannot mature to the fibril state can present considerable toxicity.


Subject(s)
Amyloid beta-Peptides/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Peptide Fragments/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Amyloid beta-Peptides/metabolism , Cholesterol/chemistry , G(M1) Ganglioside/chemistry , Humans , Lipid Bilayers/metabolism , Peptide Fragments/metabolism , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...